
 
 

 

 

 

 

 

 

 

 

 

 

 

IMF SDMX CENTRAL 
Web Services (API) Guide 

 

 

Last updated: May 2025 
 

 

 

Abstract 
This guide provides information on the web services (API) provided by IMF SDMX 

CENTRAL 
Structure Web Service  

Structural Validation  
Dataset Conversion 

Data Registration  
 



1   
 
 

Table of Contents 
1 Scope of this Guide ......................................................................................................................... 3 
2 REST API Overview ........................................................................................................................ 4 

2.1 SDMX queries ......................................................................................................................... 4 
2.2 Elements of a Query ............................................................................................................... 5 
2.3 Software Version ..................................................................................................................... 6 

3 File Formats .................................................................................................................................... 7 
3.1 CSV Files ................................................................................................................................ 7 
3.2 JSON Files .............................................................................................................................. 7 
3.3 XML Files ................................................................................................................................ 7 
3.4 XLSX Files ............................................................................................................................... 7 

4 Query Structures Web Service...................................................................................................... 12 
4.1 Overview ............................................................................................................................... 12 
4.2 HTTP Headers ...................................................................................................................... 12 
4.3 Resources ............................................................................................................................. 13 
4.4 Path Parameters ................................................................................................................... 14 
4.5 Request Parameters ............................................................................................................. 14 
4.6 Examples ............................................................................................................................... 17 

4.6.1 All concept schemes in SDMX v2.1 format. .................................................................... 17 
4.6.2 All structures saved to a file. ........................................................................................... 17 
4.6.3 Any concept with Id OBS_STATUS and all the data structures that reference it. .......... 17 
4.6.4 ECOFIN Concept Scheme in SDMX v3.0 format, using Curl, save data to XML file. ..... 17 

5 Programmatic Structural Validation Web Services ....................................................................... 18 
5.1 Overview ............................................................................................................................... 18 
5.2 HTTP Headers ...................................................................................................................... 18 
5.3 Verification Output ................................................................................................................. 20 

5.3.1 Example of Validation Output for Valid Dataset .............................................................. 20 
5.3.2 Example of validation output for invalid dataset .............................................................. 21 
5.3.3 Example of error output from a server ............................................................................ 23 
5.3.4 Examples of error types .................................................................................................. 23 

5.4 Examples ............................................................................................................................... 25 
5.4.1 Validate an XML file containing data using Curl .............................................................. 25 
5.4.2 Validate a CSV file containing data using Curl ................................................................ 25 
5.4.3 Validate an Excel file containing data using Python........................................................ 26 
5.4.4 Validate an XML file containing data using Python ......................................................... 26 



2  
 

6 Programmatic Dataset Conversion Web Services ........................................................................ 27 
6.1 Overview ............................................................................................................................... 27 
6.2 HTTP Headers ...................................................................................................................... 28 
6.3 Examples ............................................................................................................................... 32 

6.3.1 Transform a CSV file containing ECOFIN data into a SDMX-ML 2.1 file. ...................... 32 
6.3.2 Transform an Excel file containing data in a SDMX-ML 2.1 file using Python. ............... 32 
6.3.3 Transform a SDMX-ML 2.1 file containing data in a CSV file using Python ................... 33 
6.3.4 Transform a SDMX-ML 2.1 file containing data in a Fusion Excel file using Python ...... 33 

7 Registering data using Web Services ........................................................................................... 34 
7.1 Overview ............................................................................................................................... 34 
7.2 Introduction ............................................................................................................................ 34 
7.3 SDMX Registration Message ................................................................................................ 35 
7.4 Submit Data Registration Request with Curl ......................................................................... 36 
7.5 Submit Data Registration Request with Python .................................................................... 37 

 

  



3  
 

1 Scope of this Guide 
This Web Services guide provides instructions on the essential functionalities and usage of the IMF 
SDMX Central REST API. 

This service allows to automate querying, validating, converting datasets, and registering new posting 
of new data on the National Summary Data Page. The Guide describes how the API can be utilized 
by running Python code and Bash commands. It is assumed that the reader is familiar with the 
installation and use of these tools. 

Please note that all the functionalities included in this API are accessible through a Graphical User 
Interface in the IMF SDMX Central platform. Users of the platform can manually execute these 
functionalities, with no software installation or technical background required. More detailed 
instructions on the use of IMF SDMX Central can be found in the IMF SDMX Central User Guide. 

More information and guidance on the SDMX framework and available tools can be found in the 
official SDMX website and SDMX.IO. Any question or request for assistance related to the content of 
this guide can be sent at this mailbox.  

 

This guide contains technical documentation and examples for the programmatic execution of the 
following tasks: 

• Querying data structures from IMF SDMX Central Registry to allow users explore available 
structures and ensure accurate data retrieval and integration. 

• Validating data files for SDMX formatting to ensure they conform to required standards and 
formats, preventing errors, and ensuring data integrity. 

• Converting data files into SDMX format enabling compatibility with various SDMX-based tools and 
systems. 

• Registering data in the IMF SDMX Central Registry to ensure that new datasets are properly 
cataloged and made available for querying and analysis by other users. 

https://sdmxcentral.imf.org/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fsdmx.org%2Ftools%2F&data=05%7C02%7Clpacchiana%40imf.org%7C02a349dee62f4b1091b908dd51ca3c60%7C8085fa43302e45bdb171a6648c3b6be7%7C0%7C0%7C638756651245361316%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=Z81qGZtPFJR%2FC7awEvo4pxJ0z4jk4tqyh7FkyvrIiLY%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sdmx.io%2Ftools%2Fecosystem%2F&data=05%7C02%7Clpacchiana%40imf.org%7C02a349dee62f4b1091b908dd51ca3c60%7C8085fa43302e45bdb171a6648c3b6be7%7C0%7C0%7C638756651245382996%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=QJd2JD81VD0WF87SRMK7OZIW0mp42GF3TsMnM2X1bU8%3D&reserved=0
mailto:sdmx@imf.org


4  
 

2 REST API Overview 
IMF SDMX Central provides SDMX web services for querying structures and schemas, including 
Dataflows, Codelists, Concepts, Data Structures. 

The web service entry point is: https://sdmxcentral.imf.org/sdmx/v2/ 

It allows external software to connect and communicate using SDMX web services. The Structure 
REST API follows the SDMX Web Service Guidelines, available at https://sdmx.org. 

In addition to the standard SDMX specification, IMF SDMX Central supports additional “Accept” 
header values and query parameters. This document includes both the SDMX-standard and extended 
query parameters. 

Please note that there currently is no official REST API for data processing services  (e.g. validation, 
conversion, or registration). Instead, FMR specifies its own entry point: 
https://sdmxcentral.imf.org/ws/public/data. 

2.1 SDMX queries 
An SDMX API query can be constructed using the information included in this guide and it can be 
executed by entering it in a browser search bar or making a request through other methods, such as 
using the Python ‘requests’ library. 

Another way to write and execute a query is to use the ‘Web Service’ section of the IMF SDMX 
Central platform. 

 

This functionality allows to build a query for either a ‘Structure’ or a ‘Schema’ using a series of 
drop-down lists of parameters. In the example above, a request is made to retrieve all available 
“Agency Schemes”, with the output generated as an SDMX 3.0 file. The query, based on selected 
parameters, is displayed under ‘Query URL’ and it can be manually edited if needed. Pressing ‘Open 
URL’ or ‘Download’ will result in the query being executed and the output respectively being opened 
in the browser or downloaded in a file. 

In some cases, for example if the goal is to perform a POST request (e.g., automatic registration), it 
is not possible to use the ‘Web Service’ functionality on SDMX Central. As mentioned earlier, 
requests can be executed outside of SDMX Central using various methods. However, the SDMX API 
documentation recommends Curl, a UNIX tool that enables command-line operations without a 
graphical user interface. 

https://sdmx.org/?page_id=5008
https://sdmxcentral.imf.org/webservice/structure.html
https://sdmxcentral.imf.org/webservice/structure.html


5  
 

For an example of calling web services via Curl, refer to: Calling Web Services via Curl - FMR 
Knowledge Base (sdmxcloud.org). 

2.2 Elements of a Query 
This guide explains how to build a query using the information from the FMR documentation. 

The example below shows a generic request written in Python, demonstrating how this guide can help 
adapt a query to your specific use case. 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/validate' 
 
# Define the file path of the input data file 
file_path = ‘data.xlsx’ 
 
# Read the content of the input data file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Content-Type': 'application/xml', 
    'Accept': 'application/vnd.sdmx.structurespecificdata+xml;version=2.1' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output file 
with open('test_validation.txt', 'wb') as output_file: 
    output_file.write(response.content) 
     

 

• Request’s attributes: 
A request requires attributes, highlighted in green, to be executed. One piece of information 
needed is the URL to connect to the required service. The web service entry point (see SDMX 
queries) is specified in the “url” variable. The example above shows a validation being performed. 
This means that a file is used as input. The file path is specified in the variable “file_path”. 
Additional attributes that can be requested include the type of request (GET, POST), whether 
authentication is required (Public, Private), if it accepts files as input and what is the default output 
format. 
 

• Headers: 
Headers allow the inclusion of additional parameters in a request, most of which are optional. The 
"HTTP Headers" section of each chapter provides information on valid header values for specific 
requests. In the example above, two header elements are included (highlighted in blue), but the 
number of headers can be adjusted based on the specific requirements of each case. 
  

https://fmrwiki.sdmxcloud.org/Calling_Web_Services_via_Curl
https://fmrwiki.sdmxcloud.org/Calling_Web_Services_via_Curl
https://fmrwiki.sdmxcloud.org/Main_Page


6  
 

2.3 Software Version 
The content of this guide was tested in a Microsoft Windows 10 Enterprise environment. 

Below a list of software used and related version: 

• Python: 3.10.9 
• Python ‘requests’ package: 2.28.1 
• Curl: 7.88.1 



7  
 

3 File Formats 
In this guide, it is relevant to consider the difference between two types of API requests: GET and 
POST. GET requests are intended to retrieve data from a server. On the other hand, POST requests 
are used to send data to the server for processing. 

Validation, transformation and registrations are POST requests and require input data. A common 
and effective way to input data is to send a file containing the information to be processed. The SDMX 
Web Services allow different file formats to be used. This section contains information on the 
accepted structure of input files. 

3.1 CSV Files 
Extended instructions on how to structure a CSV file to use in the SDMX Web Services can be found 
here: sdmx-csv/data-message/docs/sdmx-csv-field-guide.md at master · sdmx-twg/sdmx-csv · GitHub 

An example of a CSV file using the ECOFIN DSD is provided below. It is possible to build a CSV file 
following the order of the dimensions/measures/attributes that can be seen in SDMX Central. In this 
case: 

[DATA_DOMAIN],[REF_AREA],[INDICATOR],[COUNTERPART_AREA],[FREQUENCY],[TIME_PERIOD], 
[OBS_VALUE],[BASE_PER],[UNIT_MULT],[TIME_FORMAT],[OBS_STATUS] 

Please note: If this structure of CSV file is used, the system still requires knowing which data structure is being 
referenced. This means that it will have to be added to the query. See Example.  

3.2 JSON Files 
Extended instructions on how to structure a JSON file to use in the SDMX Web Services can be found 
here: sdmx-json/structure-message at master · sdmx-twg/sdmx-json · GitHub 

3.3 XML Files 
Extended instructions on how to structure an XML file to use in the SDMX Web Services can be found 
here: GitHub - sdmx-twg/sdmx-ml: This repository is used for maintaining the SDMX-ML format 
specification 

3.4 XLSX Files 
The format of a data file in Excel is expected to follow the following conventions: 

1. Dimension, Attributes and Time Periods appear as header columns: 

Demonstration of rule #1 – Dimensions, Attributes, and Time Periods as Column Headers 

 

https://github.com/sdmx-twg/sdmx-csv/blob/master/data-message/docs/sdmx-csv-field-guide.md
https://github.com/sdmx-twg/sdmx-json/tree/master/structure-message
https://github.com/sdmx-twg/sdmx-ml/tree/master
https://github.com/sdmx-twg/sdmx-ml/tree/master


8  
 

2. If any Dimensions or Attributes have fixed values for the whole dataset, these may be placed 
in a Header section. Shown below are fixed values for DATA_DOMAIN, REF_AREA and 
COUNTERPART_AREA: 

Demonstration of rule #2 providing fixed Dimension and Attribute values for the dataset 

3. Multiple Frequencies are supported in the same worksheet (Annual and Monthly for example).  
The frequency of the reported values is derived from the date formats.    

Note: When using SDMX Central to derive the Frequency from the Time Period column, use the 
highest frequency reported in the FREQ Dimension. 

Multiple frequencies being reported 

 

When the data is read, the value for the dimension FREQ will be derived from the corresponding date 
format. The following rules are used:  

Derived FREQ code Id against the format of the date String in the date column 
Frequency 

Name 
Frequency 

Code 
Date Format Example 

Annual A YYYY 2010 
Semester S YYYY-Sn 2010-S1 
Trimester A_3 YYYY-Tn 2010-T1 
Quarterly Q YYYY-Qn 2010-Q1 
Monthly M YYYY-MM 2010-01 
Weekly W YYYY-Www 2010-W53 
Daily D YYYY-MM-DD 2010-01-01 

Date Time I YYYY-MM-DD-Thh:mm:ss 2010-01-01T20:22:00 
 
  



9  
 

4. It is permissible to have multiple worksheets with data. This mechanism can be used to report 
different frequencies of data per worksheet.  The Header section of each worksheet must be 
consistent in terms of layout, as shown in the image below. 

 
Worksheet 1 with Quarterly Data Worksheet 2 with Annual Data 

  
 

5. Observation Attributes may be reported in the header section, which is used as the default 
value for all observations. 

Demonstration of rule #5 applying a default value for an observation attribute 

 

6. The header section should be separated from the data section by a blank row. 

A single blank row separates the header and data sections 

 

7. Reported values appear in the data section. 

Reported values for Dimensions, Attributes and Time Periods 

 



10  
 

8. Dimension values are mandatory. If a value is not reported, this will result in an error. 

Omitting Dimension value FREQ will result in error 

 

9. Extra rows and columns in the spreadsheet may be added to improve the readability for the 
user. Blank rows are permitted but with certain restrictions.  Blank rows may appear before 
the header section and between the header section and data section.  However, a blank row 
may not exist within the header section. If a blank row is encountered in the header section, 
then this is assumed to indicate the end of the header section, and this may cause your 
spreadsheet to be read incorrectly. 
 

10. Blank columns indicate that no further information should be read from that row. IMF SDMX 
Central will read from the first column of information in a row until it reaches a blank cell 
(unless it’s a data row).  The image below shows a spreadsheet where column H is blank and 
row 9 is blank. This would mean that in the data section only data for 2001 and 2002 are read 
(columns F and G). Columns I and J will not be read. However, all the 3 series (rows 7,8 and 
10) will be read. 

Demonstration of the effect blank rows and columns have on the processing of data 

 

11. It is permissible to have columns in the data section that are not dimensions, attributes or 
data but may contain additional information for the reader of the spreadsheet.  The image 
below shows a spreadsheet where column F is for additional notes for each data row. The 
presence of this column will not prevent the data (in columns G to J) from being read even 
though the data rows themselves do not have a value for the row. 



11  
 

A column (column F) that is not data, dimension or attribute but will not prevent data processing 

 

12. It is permissible to have entire rows in the data section that are there to indicate what the data 
represents. This has the restriction that the text in these rows must not be in a column that 
indicates a Dimension, Attribute or Value. The image below shows row 7 being used to 
explain what rows 8 and 9 represent. The text for row 7 is in column A, which is now used for 
additional information. 

Addition of rows in the data area to aid readability 

 

13. It is permissible to have rows that do not report any observations. In the image above, row 9 
reports no values (cells H10, I10, J10 and K10 are all blank). Please note that a file with 
correct headers but no values in any cell will pass the validation, however it will not convert 
using the web user interface. It is possible to perform the conversion in this case using the 
web services. 



12  
 

4 Query Structures Web Service 

4.1 Overview 
Reference: Query Structures Web Service - FMR Knowledge Base (sdmxcloud.org) (‘Overview’ 
paragraph) 

Web 
Service 
Entry 
Point 

https://sdmxcentral.imf.org/sdmx/v2/ 

Access Public 
HTTP 
Method 

GET 

Response 
Format 

Multiple SDMX formats supported. Can 
be specified in the Accept HTTP 
Header, or the format parameter of the 
URL request. 

Response 
Statuses 

200 – Success 
404 – Structure not found 
500 – Server Error 

Error 
Response 

SDMX-ML v2.1 Error Response 
Document 

 

4.2 HTTP Headers 
Reference: Query Structures Web Service - FMR Knowledge Base (sdmxcloud.org) (‘Headers’ 
paragraph) 

The HTTP headers can be used to specify response format. This can also be defined in the request 
parameter. 

HTTP 
Header Purpose Allowed Values 

Accept To define the response format SDMX Formats 
application/vnd.sdmx.structure+edi 
application/vnd.sdmx.structure+xml;version=1.0 
application/vnd.sdmx.structure+xml;version=2.0 
application/vnd.sdmx.structure+xml;version=2.1 
 
JSON Format 
application/vnd.sdmx.json 
 
Excel Format 
application/vnd.xlsx 

Accept-
Language 

This optional header can be used 
to set the locale to return any 
multilingual text in (names and 
descriptions). If the text does not 
exist in the specified locale, then 
the default rules will be applied to 

Examples: 
Accept-Language : en (English) 
Accept-Language :fr (French) 
Accept-Language :*(all languages – no filter) 
Accept-Language : all (all languages – no 
filter) 

https://fmrwiki.sdmxcloud.org/Query_Structures_Web_Service
https://fmrwiki.sdmxcloud.org/Query_Structures_Web_Service


13  
 

find the next best appropriate 
locale. 

 

If-
Modified-
Since 

The server sends back the 
requested resource, with a 200 
status, only if it has been last 
modified after the specified date. 
If the resource has not been 
modified since, the response is a 
304 without any body. 
 

A date in the expected format of: 
<Day-Name>, <Day> <Month-Name> <Year> 
<Hour>:<Minute>:<Second> GMT 
 
Examples: 
Fri, 31 Dec 2023 23:59:59 GMT 
Thu, 8 June 2023 14:00:00 GMT 

 

4.3 Resources 
The resource is used to determine which structure type is being queried. The following resources are 
supported: 

• datastructure 
• metadatastructure 
• categoryscheme 
• conceptscheme 
• codelist 
• hierarchicalcodelist 
• organisationscheme 
• agencyscheme 
• dataproviderscheme 
• dataconsumerscheme 
• organisationunitscheme 
• dataflow 
• metadataflow 
• reportingtaxonomy 
• provisionagreement 
• structureset 
• process 
• categorisation 
• contentconstraint 
• actualconstraint 
• allowedconstraint 
• attachmentconstraint 
• transformationscheme 
• rulesetscheme 
• userdefinedoperatorscheme 
• customtypescheme 
• namepersonalisationscheme 
• vtlmappingscheme 
• structure 



14  
 

4.4 Path Parameters 
The path parameters are used to further define the attributes of the request structure(s).  All the path 
parameters are optional.  If the path parameters have a default value, it will be used in the absence of 
the parameter. 

Parameter Purpose Allowed Values 
agencyID The agency maintaining the 

artefact to be returned. It is 
possible to set more than one 
agency using + as a separator 

all – default. any agency  
Or any string compliant with the SDMX 
common:NCNameIDType 

structureID The id of the artefact to be 
returned. It is possible to set 
more than one id using + as a 
separator 

all – default. all structure ids  
Or any string compliant with the SDMX 
common: IDType 

version The version of the structure(s) to 
be returned 

latest – default. latest version  
all – all versions 
Or any string compliant with the SDMX 
common: VersionType 

itemID If the resource is to an item 
scheme (Codelist, Concept 
Scheme, Category Scheme), the 
item inside the scheme can be 
identified by this parameter 

String 
A string compliant with the SDMX 
common:NestedNCNameIDType for 
conceptscheme and agencyscheme, SDMX 
common:IDType for hierarchicalcodelist or with 
the SDMX common:NestedIDType in all other 
cases 

 

4.5 Request Parameters 
The request parameters are all optional and can be used to define the response detail, format, and any 
additional structures which reference, or are referenced by those identified in the query path. 

Parameter Purpose Allowed Values 
detail To define which structures (if any) 

are output as stubs 
full – default.  Output full response. 
allstubs – Output all the structures as 
stubs. 
allcompletestubs – include annotations 
and description. 
referencestubs – Output the full query 
result, and any referenced structures are 
returned as stubs. 
referencecompletestubs – Complete 
stubs only on referenced structures. 
referencepartial – Outputs the full query 
result and any referenced Codelists, 
Concept Schemes, Agency Schemes are 
returned as partial lists based on the 
Codes, Concepts, and Agencies used by 
the referencing Provision Agreements, 
Dataflows, Data Structures, Hierarchical 
Codelists. Partial Codelists are derived 



15  
 

from Content Constraints used to define 
allowable content for data reporting. 
raw – do not resolve extended codelists. 
 
Example: 
detail=allstubs 

references To define if additional structures are 
returned from the query. 
 
The structures can either be ones 
which reference or are referenced by 
the structures in the query result. 
 
If the query result is for a specific 
item in an item scheme, then this 
parameter will identify the references 
for that item. 

none – default.  Do not output any 
additional structures. 
parents –output structures the reference 
the structures matching the query. 
parentsandsiblings – same as parents, 
but also include all the additional structures 
referenced by the parents. 
children – the structures referenced by the 
structures in the query result. 
descendants – children and their children 
(up to any level). 
all – return all. 
ancestors – return ancestors. 
 
In addition, a concrete type of resource 
may be used, for example: 
datastructure  
 
 
Example: 
references=datastructure 

partial If set to true creates partial Codelists in 
the response based on IMF SDMX 
Central Content Constraints defining 
allowable content. 
 
The pre-requisite is that the query 
must be for a single constrainable 
structure (Provision Agreements, 
Dataflow, or Data Structure) and 
include references. 

true/false 

format Can be used to define the response 
format (as an alternative to the HTTP 
Accept Header). 

sdmx (latest version) 
sdmx-3.0 
sdmx-2.1 
sdmx-2.0 
sdmx-1.0 
sdmx-edi  
sdmx-edi-lenient 
sdmx-json 
xlsx 
Example: 
format=sdmx-edi 

locale This optional parameter can be used to 
set the locale to return any multilingual 
text in (names and descriptions).  If the 

Any locale 
 



16  
 

text does not exist in the specified 
locale, then the default rules will be 
applied to find the next best 
appropriate locale. 

Example: 
locale=fr 

saveAs If provided the HTTP Header ‘Content-
Disposition’ will be set to attachment 
with the filename being set to the value 
provided. 
 
This will result in the response being 
saved to a file. 
 
The file extension is not required as IMF 
SDMX Central will determine the 
extension based on the response 
format. 

String 
 
Example: 
saveAs=myDownload 

prettyPrint If the you are requesting XML, and you 
would like the response XML to be 
formatted, then you can pass true 

String 
prettyPrint=true 

validFrom For structures with a defined validFrom 
or validTo value, returns only those 
structures which have a validFrom value 
before the specified date 

Single time period. Conforms to the ISO-
8601 standard but SDMX date time 
formats may also be used 
Example: 
validFrom=1960-12-31 

validTo For structures with a defined validFrom 
or validTo value, returns only those 
structures which have a validTo value 
after the specified date 

Single time period. Conforms to the ISO-
8601 standard but SDMX date time 
formats may also be used. 
 
Example: 
validTo=1960-12-31 

validOn Returns structures where the items 
listed are applicable for the specified 
date. This parameter is only applicable 
for those structures which support Item 
Validity. 

Single time period. Conforms to the ISO-
8601 standard but SDMX date time 
formats may also be used. 
 
Example: 
validOn=1960-12-31 

labels For sdmx-csv format only: 
For each element of the CSV, will return 
either the ID only or the ID and Name 
separated by a colon 

Id – default 
Both 
 
Example: 
labels=both 

timeFormat For sdmx-csv format only: 
Normalized TIME_PERIOD values are 
converted to the most granular ISO 
8601 representation taking into account 
the highest frequency of the data in the 
message 

original – default 
normalized 
 
Example: 
timeFormat=normalized 

 

  



17  
 

4.6 Examples 
As querying structures is a GET request, these examples can be copy pasted in a browser search tab 
and executed by pressing enter. 

The URL used to get structures/schemas is built using the items mentioned in the previous 
paragraphs following this blueprint: 

https://sdmxcentral.imf.org/sdmx/v2/structure/resource/agencyID/resourceID/version/itemID/?para
meter1=x&parameter2=y 

4.6.1 All concept schemes in SDMX v2.1 format. 
https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/all/all/+/?format=sdmx-2.1 

4.6.2 All structures saved to a file. 
https://sdmxcentral.imf.org/sdmx/v2/structure/structure/all/all/+/?format=sdmx-2.1& saveAs=fullexport 

4.6.3 Any concept with Id OBS_STATUS and all the data structures that reference it. 
https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/all/all/all/OBS_STATUS?references=da
tastructure 

4.6.4 ECOFIN Concept Scheme in SDMX v3.0 format, using Curl, save data to XML file. 
curl -X GET 
https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/IMF/ECOFIN_CONCEPTS/+/?format=s
dmx-3.0 -o test_download_curl_1.xml 

https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/all/all/+/?format=sdmx-2.1
https://sdmxcentral.imf.org/sdmx/v2/structure/structure/all/all/+/?format=sdmx-2.1&%20saveAs=fullexport
https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/all/all/all/OBS_STATUS?references=datastructure
https://sdmxcentral.imf.org/sdmx/v2/structure/conceptscheme/all/all/all/OBS_STATUS?references=datastructure


18  
 

5 Programmatic Structural Validation Web Services 

5.1 Overview 
Reference: Validation Web Service - FMR Knowledge Base (sdmxcloud.org)  

The validation web service performs structural validation against a specified DSD. It consumes a 
dataset (both SDMX and non-SDMX formats are supported) and returns a JSON response identifying 
details about the dataset, including if there are any validation errors. 

URL Entry Point https://sdmxcentral.imf.org/ws/public/data/validate 
Access Public (default). Configurable to Private 
HTTP Method POST 
Accepts CSV, XLSX, SDMX-ML, SDMX-EDI (any format for which there is 

a Data Reader) 
Compression Zip files supported, if loading from URL gzip responses supported 
Content Type 1. multipart/form-data (if attaching file) – the attached file must 

be in field name of uploadFile 
2. application/text or application/xml (if submitting data in the 

body of the POST) 

Response Format application/json 

Response Statuses 200 - Validation could be performed 
400 - Validation could not be performed (either an unreadable 
dataset, or unresolvable reference to a required structure) 
401 - Unauthorized (if access has been restricted) 
500 - Server Error 

 

5.2 HTTP Headers 
HTTP Header Purpose Allowed Values 

Data-Format Used to inform the server when the 
data is in CSV format. 
 
See examples for more details on 
performing validation using a CSV 
file. 

csv;delimiter=[delimiter] 
Where [delimiter] is either: 

• comma 
• tab 
• semicolon 
• space 

Sender-Id The SenderId is included in the 
verification report. 
 
If not provided, the SenderId will be 
taken from the header of the dataset. 
 
If the dataset does not contain a 
SenderId (for example a non-SDMX 
format) then the verification report will 
contain the SenderId of IMF SDMX 
Central. 

The following charters are allowed: 
A-z, a-z 
0-9  
$, _, -, @, \ 
 

https://fmrwiki.sdmxcloud.org/Data_Validation_Web_Service


19  
 

Structure Provides the structure to verification 
the data against. 
 
This is optional as this information 
may be present in the header of the 
DataSet.  If provided this value will 
override the value in the dataset (if 
present). 

Valid SDMX URN for Provision 
Agreement, Dataflow, or Data 
Structure Definition. 

Inc-Metrics 
 

Optional. Includes metrics on the 
verification.   
 
This will add extra detail to the 
verification report  

Boolean (true/false) 

Inc-Valid 
 

Optional. Instructs the service to 
include a dataset with all the valid 
series and observations in the 
response.   
 
As the result will contain a separate 
file for the dataset, the response 
format will be set to either 
multipart/mixed message with a 
boundary per file, or if the Zip header 
is set to true, the output will be a 
single zip file. 
The file is called ValidData with the file 
extension based on the output format. 

Boolean (true/false) 

Inc-Invalid 
 

Optional. Instructs the service to 
include a dataset with all the invalid 
series and observations in the 
response.   
 
As the result will contain a separate 
file for the dataset, the response 
format will be set to either 
multipart/mixed message with a 
boundary per file, or if the Zip header 
is set to true, the output will be a 
single zip file. 
The file is called InvalidData with the 
file extension based on the output 
format. 

Boolean (true/false) 

Accept 
 

Optional. Instructs the service which 
data output format to output the valid 
or invalid datasets in. 
 
This Header is only used if Inc-Valid or 
Inc-Invalid are set to true. 

See Accept formats for REST Data 
Query 

Zip 
 

Optional. Compresses the output as a 
zip file.  If used in conjunction with Inc-

Boolean (true/false) 

https://fmrwiki.sdmxcloud.org/Data_Formats
https://fmrwiki.sdmxcloud.org/Data_Formats


20  
 

 Valid or Inc-Invalid the zip will contain 
multiple files. 

 

5.3 Verification Output 
The verification output contains both human readable error descriptions, as well as machine 
processible locations of the errors within the dataset.  The location in the dataset is described as a 
key or observation locator in the format; A:UK:M:2008 – where each component relates to the 
Dimension value, separated by a colon.  If the error position is observation, the last part of the key is 
the observation’s time period. 

5.3.1 Example of Validation Output for Valid Dataset 

{ 
  "Meta": { 
    "RequestTime": 1564410081711, 
    "Duration": 43 
  }, 
  "FileFormat": "Structure Specific (Compact) v2.1", 
  "Prepared": "2019-07-29T10:23:01", 
  "SenderId": "FR_DEMO", 
  "DataSetId": null, 
  "Status": "Complete", 
  "Errors": false, 
  "Datasets": [ 
    { 
      "DSD": 
"urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=OECD:HIGH_AGLINK_2011(1.0)
", 
      "Dataflow": 
"urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=OECD:AGRIC_OUTLOOK_2011_2020(1.
0)", 
      "DataProvider": 
"urn:sdmx:org.sdmx.infomodel.base.DataProvider=METATECH:DATA_PROVIDERS(1.0).METATEC
H", 
      "ProvisionAgreement": 
"urn:sdmx:org.sdmx.infomodel.registry.ProvisionAgreement=OECD:OECD_AGRIC_OUTLOOK(1.
0)", 
      "KeysCount": 2, 
      "ObsCount": 62, 
      "GroupsCount": 0, 
      "Errors": false 
      "ReportedPeriods": { 
      "A": { 
   "Name": "Annual", 
   "StartPeriod": "1990", 
   "EndPeriod": "2020" 
 } 
      },  
    } 
  ], 
  "PreventsConversion": false, 
  "PreventsPublication": false 
} 

 

  



21  
 

5.3.2 Example of validation output for invalid dataset 
 
{ 
  "Meta": { 
    "RequestTime": 1564401209760, 
    "Duration": 34 
  }, 
  "InvalidData": { 
    "Datasets": [ 
      { 
        "Structure": 
"urn:sdmx:org.sdmx.infomodel.registry.ProvisionAgreement=OECD:OECD_AGRIC_OUTLOOK(1.
0)", 
        "Series": 2, 
        "Observations": 61, 
        "Groups": 0 
      } 
    ] 
  }, 
  "ValidData": { 
    "Datasets": [ 
      { 
        "Structure": 
"urn:sdmx:org.sdmx.infomodel.registry.ProvisionAgreement=OECD:OECD_AGRIC_OUTLOOK(1.
0)", 
        "Series": 2, 
        "Observations": 32, 
        "Groups": 0 
      } 
    ] 
  }, 
  "FileFormat": "Structure Specific (Compact) v2.1", 
  "Prepared": "2019-07-29T10:23:01", 
  "SenderId": "FR_DEMO", 
  "DataSetId": null, 
  "Status": "Complete", 
  "Errors": true, 
  "Datasets": [ 
    { 
      "DSD": 
"urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=OECD:HIGH_AGLINK_2011(1.0)
", 
      "Dataflow": 
"urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=OECD:AGRIC_OUTLOOK_2011_2020(1.
0)", 
      "DataProvider": 
"urn:sdmx:org.sdmx.infomodel.base.DataProvider=METATECH:DATA_PROVIDERS(1.0).METATEC
H", 
      "ProvisionAgreement": 
"urn:sdmx:org.sdmx.infomodel.registry.ProvisionAgreement=OECD:OECD_AGRIC_OUTLOOK(1.
0)", 
      "KeysCount": 3, 
      "ObsCount": 93, 
      "GroupsCount": 0, 
      "ReportedPeriods": { 
        "A": { 
        "Name": "Annual", 
        "StartPeriod": "1990", 
        "EndPeriod": "2020" 
 } 
      }, 
      "Errors": true, 
      "ValidationReport": [ 
 { 
          "Type": "Constraint", 
          "Errors": [ 
            { 



22  
 

       "Message": "Disallowed Dimension Value: REF_AREA=AFR", 
              "Dataset": 0, 
              "ComponentId": " REF_AREA ", 
              "ReportedValue": "AFR", 
       "Position": "Series", 
              "Keys": ["AFR:BT:AA"] 
     } 
   ] 
 }, 
 { 
   "Type": "Representation", 
   "Errors": [ 
   { 
     "Message": "Dimension 'VARIABLE' is reporting value 'AA' which  is not 
a valid representation in referenced Codelist 
'OECD:CL_HIGH_AGLINK_2011_VARIABLE(1.0)'", 
     "Dataset": 0, 
     "Position": "Series",               
    "ComponentId": " VARIABLE", 
            "ReportedValue": "AA", 
     "Keys": ["AFR:BT:AA"] 
   }, 
   { 
     "Message": "Error in Primary Measure 'OBS_VALUE': Reported value 'XXX' 
is not of expected type 'Double'", 
     "Dataset": 0,               
    "ComponentId": " OBS_VALUE", 
            "ReportedValue": "XXX", 
     "Position": "Observation", 
     "Keys": ["AFR:BT:IM:2010"] 
            } 
          ] 
        }, 
        { 
 "Type": "FormatSpecific", 
 "Errors": [ 
            { 
       "Message": "Unexpected attribute 'ASD' for element 
'StructureSpecificData/DataSet/Series/Obs'", 
       "Dataset": 0, 
       "Position": "Dataset" 
     } 
   ] 
        } 
      ] 
    } 
  ], 
  "PreventsConversion": false, 
  "PreventsPublication": true 
} 
 
 

Note the first three elements ‘Meta’, ‘InvalidData’, ‘ValidData’, are present in the report if Inc-Metrics is 
set to true.  Inc-valid and Inc-Invalid set to true enables the report to know the metrics for the invalid 
and valid data.   

The Error Position is either set to Dataset, Series, Observation, or Group.   

PreventsConverstion and PreventsPublication is an indication on the severity of the error.  These 
settings on which errors prevent conversion and publication can be set in the Fusion Registry by the 
administrator of the system. 

  



23  
 

5.3.3 Example of error output from a server 
An example error output from a server, which makes the request un-processible, is shown below: 

{"Error": "Unrecognised file format, contents of file are: this is a bad format"} 

 

5.3.4 Examples of error types 
In the validation message received after performing the automatic validation on some data, two 
elements’ “Errors” may be present. The first error message is a Boolean, reporting if errors were or 
were not found in the data. If this flag is true, then a second error message is added containing 
“ValidationReport”, which in turns contains more details about the errors that were found. Below there 
is a non-exhaustive list of potential errors.  

• Duplicate Observations 
When conflicting observations are inputted for a given indicator and time period, an error is 
raised. In this case, for indicator NGDPVA_ISIC4_A_XDC, time period 1997, two different 
observations are supplied: 50 and 100. 

Errors":true, 
"ValidationReport":[ 
 { 
       "Type":"Duplicate", 
       "Errors":[ 
       {  
       "ErrorCode":"REG-201-230", 
       "Message":"Duplicate value reported NAG:BS:NGDPVA_ISIC4_A_XDC:_Z:A:1997.    
Reported values are: '50' and '100'", 
       "Dataset":0, 
       "ComponentId":"OBS_VALUE", 
       "ReportedValue":"100", 
       "Position":"Observation", 
       "Keys":["NAG:BS:NGDPVA_ISIC4_A_XDC:_Z:A:1997"] 
}]}]}] 

• Semantically compliant 
This is a check related to the format of the file used for the validation. In this case an Excel file 
is used, and one of the requirements is that time periods should be in ascending 
chronological order. In this case this criterion was not satisfied:  

Errors":true, 
"ValidationReport":[ 
 { 
       "Type":"FormatSpecific", 
       "Errors":[ 
       {  
       "ErrorCode":"-", 
       "Message "Worksheet 'data' contains Annual data which is not in the expected 
chronological order", 
       "Dataset":0, 
       "Position":"Dataset", 
}]}] 

  



24  
 

• Mandatory components 
In the SDMX framework, certain information must be provided. One example of this are 
Dimensions (as opposed to Attributes that are not mandatory), specified in a given DSD. In 
this example, value for a dimension was not reported:  

Errors":true, 
"ValidationReport":[ 
 { 
       "Type":"Structure", 
       "Errors":[ 
       {  
       "ErrorCode":"REG-201-186", 
       "Missing value for Dimension INDICATOR", 
       "Dataset":0, 
       "ComponentId":"INDICATOR", 
       "Position":"Series", 
}]}] 

• Obs Status 
This check ensures that the OBS_STATUS provided is compliant with the OBS_STATUS 
codelist and that it is used coherently with the data input of the validation. In this case one 
data series has OBS_STATUS==”M” which means ‘Missing’ and thus an empty value is 
expected. However, that is not the case, and we find observations associated with this data 
series: 

Errors":true, 
"ValidationReport":[ 
 { 
       "Type":" ObsStatusValidator", 
       "Errors":[ 
       {  
       "ErrorCode":"REG-201-130", 
       "Observation value has been specified but OBS_STATUS enforces that this is 
not valid. OBS_STATUS: M", 
       "Dataset":0, 
       "Position":"Observation", 
}]}] 

  



25  
 

• Multiple Errors 
In this example multiple checks fail. This is how they appear in the validation report:  

"Errors":true, 
"ValidationReport":[ 
 { 
          "Type":"Structure",   
          "Errors":[ 
               { 
                 "ErrorCode":"REG-201-186", 
          "Message":"Missing value for Dimension INDICATOR", 
    “Dataset”:0, 
     "ComponentId":INDICATOR", 
     "Position":"Series", 
                 "Keys":["NAG:BS::_Z:A"]}]},  
        { 
           "Type":"Duplicate", 
           "Errors":[ 
                { 
               "ErrorCode":"REG-201-230", 
               "Message":"Duplicate value reported  
NAG:BS:NGDPVA_ISIC4_G_XDC:_Z:A:1997. Reported values are: '50' and '100'", 
               "Dataset":0, 
               "ComponentId":"OBS_VALUE", 
               "ReportedValue":"100", 
               "Position":"Observation", 
               "Keys":["NAG:BS:NGDPVA_ISIC4_G_XDC:_Z:A:1997"] 
}]} 

 

5.4 Examples 
As validating files is a POST method, these examples have to be executed using Curl or another 
comparable method. 

5.4.1 Validate an XML file containing data using Curl 

curl -X POST --header "Content-Type:application/xml" --header "Accept: 
application/vnd.sdmx.structurespecificdata+xml;version=2.1" --data-binary @data.xml 
"https://sdmxcentral.imf.org/ws/public/data/validate" > test_validation.txt 

5.4.2 Validate a CSV file containing data using Curl 

curl -X POST --data-binary @data.csv --header 
"Accept:application/vnd.sdmx.structurespecificdata+xml;version=2.1" --header "Data-
Format:csv;delimiter=comma" --header 
"Structure:urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=IMF:ECOFIN_DSD(1.0)" --header 
"Content-Type:application/text"  "https://sdmxcentral.imf.org/ws/public/data/validate" > test_validation.txt 

 

  



26  
 

5.4.3 Validate an Excel file containing data using Python 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/validate' 
 
# Define the file path of the input file 
file_path = 'data.xlsx' 
 
# Read the content of the input file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Content-Type': 'application/xml', 
    'Accept': 'application/vnd.sdmx.structurespecificdata+xml;version=2.1' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output file 
with open('test_validation.txt', 'wb') as output_file: 
    output_file.write(response.content)     
 

5.4.4 Validate an XML file containing data using Python 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/validate' 
 
# Define the file path of the input file 
file_path = 'data.xml' 
 
# Read the content of the input file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Content-Type': 'application/xml', 
    'Accept': 'application/vnd.sdmx.structurespecificdata+xml;version=2.1' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output file 
with open('test_validation.txt', 'wb') as output_file: 
    output_file.write(response.content)    

 



27  
 

6 Programmatic Dataset Conversion Web Services 

6.1 Overview 
Reference: Data Transformation Web Service - FMR Knowledge Base (sdmxcloud.org) 

The Convert web service can be used to convert a dataset from one accepted file format to another. 
To use this web service, POST the file to the URL Entry Point. 

URL 
Entry 
Point 

https://sdmxcentral.imf.org/ws/public/data/transform 

Access
  

Public 

HTTP 
Method 

POST 

Accepts CSV, XLSX, SDMX-ML, SDMX-EDI (any format for 
which there is a Data Reader) 

Content 
Type 

1. multipart/form-data (if attaching file) – the attached 
file must be in field name of uploadFile 

2. application/text or application/xml (if submitting data 
in the body of the POST) 

Response 
Format 

SDMX Structure Specific v2.1 

Response 
Statuses 

200 - Transformation performed 
400 - Transformation could not be performed (either an 
unreadable dataset, or resolvable reference to a 
required structure) 
401 - Unauthorized (if access has been restricted) 
500 - Server Error 

 

  

https://fmrwiki.sdmxcloud.org/Data_Transformation_Web_Service


28  
 

6.2 HTTP Headers 
The following headers are all optional and can be used to provide more details on how to perform the 
conversion. 

HTTP 
Header Purpose Allowed Values 

Accept The data transmission format to 
convert the dataset to. 

 
Note: From FMR 11.5.0 the format 
(if not specified) defaults to the 
input format. Previous versions 
defaulted to SDMX Structure 
Specific 2.1 

SDMX Formats 
• application/vnd.sdmx.data+csv;version=2.0

.0;labels=[id|name|both];timeFormat=[origin
al|normalized];keys=[none|obs|series|both] 

• application/vnd.xlsx 
• application/vnd.sdmx.genericdata+xml;versi

on=2.1 
• application/vnd.sdmx.structurespecificdata+

xml;version=2.1 
• application/vnd.sdmx.generictimeseriesdat

a+xml;version=2.1 
• application/vnd.sdmx.structurespecifictimes

eriesdata+xml;version=2.1 
• application/vnd.sdmx.data+json;version=1.

0.0 
• application/vnd.sdmx.data+csv;version=1.0

.0;labels=[id|both];timeFormat=[original|nor
malized] 

• application/vnd.sdmx.data+edi 

SDMX Formats to be supported in future FMR 
releases 

• application/vnd.sdmx.data+json;ve
rsion=2.0.0 

• application/vnd.sdmx.data+xml;ver
sion=3.0.0 

Note that the Fusion Excel data transmission 
format is supported as the input, but not output 
of a transformation. 

Data-
Format 

Used to inform the server when the 
data is in CSV format. 

csv;delimiter=[delimiter] 

Where [delimiter] is either: 

• comma 
• tab 
• semicolon 
• space 

Structure (optional) Provides the structure to 
validate the data against. 

This is optional as this information 
may be present in the header of the 
DataSet. If provided this value will 

Valid SDMX URN for Provision Agreement, 
Dataflow, or Data Structure Definition 



29  
 

override the value in the dataset (if 
present). 

Receiver-Id 

(Since v9.8) 
The ReceiverId may be included in 
the validation report. 

If not provided, the ReceiverId will 
be taken from the header of the 
dataset if it is present. 

If the dataset does not contain a 
ReceiverId (for example a non-
SDMX format) then the validation 
report will not contain a ReceiverId 
in the header. 

The following characters are allowed: A-z, a-z 
0-9 $, _, -, @, \ 

Dataset-Idx If the loaded file contains multiple 
datasets, this argument can be 
used to indicate which dataset is 
transformed. If this argument is not 
present then all datasets will be in 
the output file (if the file formats 
permits multiple datasets). 

Zero indexed integer, example: 0 

Dataset-Id 

(Since v9.8) 

An optional parameter which allows 
the user to specify the value of the 
DataSetID generated in the 
validation. 

The following characters are allowed: A-z, a-z 
0-9 $, _, -, @, \ Specific variables permit the 
insertion of Data Structure / Data Flow values. 
These values are: 
${DATFLOW_ID} 
${DATFLOW_ACY} 
${DATFLOW_VER} 
${DSD_ID} 
${DSD_ACY} 
${DSD_VER} 

Note that dots in the version number will be 
replaced with the _ character, since dots are 
not permitted in the ID. 

Dataset-
Action 
(Since 
v9.8.1) 

An optional parameter which allows 
the user to specify the value of the 
DataSetAction generated in the 
validation report. If this parameter is 
not specified, the default value will 
be used. 

May be one of the following: 

• Append 

• Replace 

• Merge 

• FullReplace 

• Delete 

• Information 

Map-
Structure 
(Since 
v9.2.13) 

An optional parameter to inform the 
Fusion Registry to transform the 
structure of the dataset to conform 
to another Data Structure Definition. 

Valid SDMX URN for Dataflow or Data 
Structure Definition. 



30  
 

The value provided can be a URN 
of a Dataflow or Data Structure 
Definition to map the incoming data 
to. A Structure Map must exist in 
the Fusion Registry which maps 
between the incoming Data 
Structure/Dataflow and Mapped 
Data Structure/Dataflow. 

Alternatively the URN may be the 
URN of the Data Structure Map to 
use for the mapping (since v9.4.4) 

Inc-
Unmapped 

(Since 
v9.6.5) 

If the Map-Structure Header is 
used, then the inclusion of Inc-
Unmapped will output a second 
dataset, if there are unmapped 
series. The additional dataset 
contains the data that could not be 
mapped due to missing mapping 
rules, or ambiguous outputs. 

The format of the additional dataset 
is the same format as the output 
dataset. 

As the result may contain a 
separate file, the response format is 
either set to multipart/mixed 
message with a boundary per file, 
or if the Zip header is set to true, 
the output will be a single zip file. 
The file names are 'out' and 
'unmapped' with the file extension 
based on the output format. 

Boolean (true/false) 

Inc-
Unmapped
Report 
(Since 
v11.5.0) 

If the Map-Structure Header is 
used, then the inclusion of Inc-
UnmappedReport may output 
another file, if there are unmapped 
series. The additional file contains a 
report on the information that could 
not be mapped due to missing 
mapping rules, or ambiguous 
outputs. 

The format of this report consists of 
JSON elements: 

• The StructureMap used in the 
mapping 

• The Source Structure URN 

• The Target Structure URN 

Boolean (true/false) 



31  
 

• The Result 

The result consists of an Input and 
an Output which details what the 
input managed to map to. The 
output also contains an Array called 
"MissingDimensions" which lists the 
ID of the missing dimensions. 

Inc-Metrics 
(Since 
v9.6.5) 

Includes metrics on the 
transformation. 

The result will contain a separate 
file, either as a multipart/mixed 
message with a boundary per file, 
or if the Zip header is set to true, 
the output will be a single zip file. 

Boolean (true/false)  

Fail-On-
Error 
(Since 
v9.5.0) 

An optional parameter to tell the 
transformation process to fail if an 
error is detected in the dataset. 

Boolean (true/false) 

Zip 
(Since 
v9.6.5) 

Compresses the output as a zip file. 
This if used in conjunction with Inc-
Metrics or Inc-Unmapped the zip 
will contain multiple files. 

Boolean (true/false) 

Duplicate-
Behaviour 
(Since 
v11.1.6) 

Specify the behaviour to perform 
when duplicate observations are 
encountered. Either the duplicates 
can be preserved or either the first 
or last value can be used. 

May be one of the following: 

• useFirst 

• useLast 

• preserve 

Skip-
Validation 
(Since 
v11.5.1) 

Allows the validation process to be 
skipped when transforming a file. 
Useful when the input file is well 
understood or large. Default is 
false. 

Boolean (true/false) 

 

  



32  
 

6.3 Examples 
As converting files is a POST method, these examples must be executed using Curl or another 
comparable method. 

6.3.1 Transform a CSV file containing ECOFIN data into a SDMX-ML 2.1 file. 

$ curl -X POST --data-binary @data.csv --header 
"Accept:application/vnd.sdmx.structurespecificdata+xml;version=2.1" --header "Data-
Format:csv;delimiter=comma" --header 
"Structure:urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=IMF:ECOFIN_DSD(1.0)" --header 
"Content-Type:application/text"  "https://sdmxcentral.imf.org/ws/public/data/transform" > 
transformation.xml 

6.3.2 Transform an Excel file containing data in a SDMX-ML 2.1 file using Python. 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/transform' 
 
# Define the file path of the input file 
file_path = 'data.xlsx' 
 
# Read the content of the input file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Accept': 'application/vnd.sdmx.structurespecificdata+xml;version=2.1', 
    'Content-Type': 'application/text' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output XML file 
with open('test_output.xml', 'wb') as output_file: 
    output_file.write(response.content) 

 

  



33  
 

6.3.3 Transform a SDMX-ML 2.1 file containing data in a CSV file using Python 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/transform' 
 
# Define the file path of the input file 
file_path = 'data.xml' 
 
# Read the content of the input file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Accept': 'application/vnd.sdmx.data+csv;version=2.0.0', 
    'Content-Type': 'application/text' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output CSV file 
with open('test_output.csv', 'wb') as output_file: 
    output_file.write(response.content) 
 
Notice how the ‘Accept’ header must change in order to specify a new desired output. See HTTP 
Headers for more details. 

6.3.4 Transform a SDMX-ML 2.1 file containing data in a Fusion Excel file using Python 

import requests 
 
# Define the URL of the API endpoint 
url = 'https://sdmxcentral.imf.org/ws/public/data/transform' 
 
# Define the file path of the input file 
file_path = 'data.xml' 
 
# Read the content of the input file 
with open(file_path, 'rb') as file: 
    data = file.read() 
 
# Define the headers 
headers = { 
    'Accept': 'application/vnd.xlsx', 
    'Content-Type': 'application/text' 
} 
 
# Make the POST request 
response = requests.post(url, data=data, headers=headers) 
 
# Write the response to the output file 
with open('test_output.xlsx', 'wb') as output_file: 
    output_file.write(response.content) 



34  
 

7 Registering data using Web Services 

7.1 Overview 
Reference: Data Registration - Fusion Registry Wiki (sdmxcloud.org)  

URL Entry 
Point 

https://sdmxcentral.imf.org/ws/secure/sdmxapi/rest 

Access Private (admin/agency/data provider for the Provision 
Agreement) 

HTTP 
Method 

POST 

Accepts SDMX-ML Submit Registration Request 
Compression gzip 
Content Type xml 

Response 
Format 

xml 

Response 
Statuses 

200 - registration success 
400 - Bad URN syntax 
401 - Unauthorized (if access has been restricted) 
403 - No results (no data) 
500 - Server Error 

 

7.2 Introduction 
Data can be registered using the web user interface at the following link: IMF SDMX Central 
This procedure allows to link a dataflow and a data provider to an URL pointing to a data file in 
SDMX-ML format.  

In order to perform a registration, it is necessary to login. After this step, the button ‘Register URL’ will 
be available, and it will allow to perform a registration by inputting Dataflow, Data Provider and URL. It 
is also possible to select an existing registration and ‘Re-Register’ it, to update the ‘Last Updated’ 
timestamp. 

To perform a registration using the Web Services, a POST request is used to send a SDMX_ML file 
containing a registration message. This file does not contain the data we want to register, but rather 
the information that we would otherwise input manually using the user interface, including the URL 
that points to the actual data.  

In the paragraphs below it is possible to find the registration message XML file that can be edited and 
used to execute an automatic registration, and step by step instructions on how to do it using either 
Curl or Python. 

  

https://wiki.sdmxcloud.org/Data_Registration#SDMX_web_Service
https://sdmxcentral.imf.org/data/registrations.html


35  
 

7.3 SDMX Registration Message 
The XML file below is an example of a SDMX message used to perform a registration through Web 
Services: 

<?xml version="1.0" encoding="UTF-8"?> 
<mes:RegistryInterface xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xml="http://www.w3.org/XML/1998/namespace" 
xmlns:mes="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message" 
xmlns:reg="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/registry" 
xmlns:com="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/common" 
xsi:schemaLocation="http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message 
https://registry.sdmx.org/schemas/v2_1/SDMXMessage.xsd"> 
 <mes:Header> 
   <mes:ID>IREF981386</mes:ID> 
   <mes:Test>false</mes:Test> 
   <mes:Prepared>2020-02-20T11:28:51Z</mes:Prepared> 
   <mes:Sender id="ZZZ"/> 
   <mes:Receiver id="not_supplied"/> 
 </mes:Header> 
   <mes:SubmitRegistrationsRequest> 
     <reg:RegistrationRequest action="Replace"> 
       <reg:Registration lastUpdated="2019-03-21T12:58:17" indexReportingPeriod="false" indexDataSet="false" 
indexAttributes="false" id="1167332d21d37d8589879ce5ff7d35ee" indexTimeSeries="false" 
id="B1CFA93A355AD234D318B80DEDE2ADCB" > 
         <reg:ProvisionAgreement> 
           <Ref package="registry" agencyID="IMF" id="ZZFR_TEST" version="1.0" class="ProvisionAgreement"/> 
         </reg:ProvisionAgreement> 
         <reg:Datasource> 
           
<reg:SimpleDataSource>https://si3.bcentral.cl/SieteSdmx/SieteSdmx.ashx?SDMXCategory=SDMX_BOP6</reg:
SimpleDataSource> 
         </reg:Datasource> 
       </reg:Registration> 
     </reg:RegistrationRequest> 
   </mes:SubmitRegistrationsRequest> 
</mes:RegistryInterface> 

 
In the SDMX message above, the values highlighted are the parameters that should be edited to 
perform a registration: 

• (Sender) id: CL_ORGANISATION code of the institution submitting the registration; 
• (Receiver) id: CL_ORGANISATION code for IMF (‘1C0’) 
• agencyID: The agency associated with a Provision Agreement; 
• (Provision Agreement) id: The ID of the Provision Agreement; 
• (Registration) id: this value will be stored in SDMX Central only if it is the first registration for 

the Dataflow/Country. If it is an attempt to update an existing registration, the value is ignored, 
and the previously existing ID is kept; 

• SimpleDataSource: It can be a URL or a file. 

Please note that the information contained in the Header (‘<mes>:Header’) is ignored when 
performing the registration. 

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/XML/1998/namespace
http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message
http://www.sdmx.org/resources/sdmxml/schemas/v2_1/registry
http://www.sdmx.org/resources/sdmxml/schemas/v2_1/common
http://www.sdmx.org/resources/sdmxml/schemas/v2_1/message
https://registry.sdmx.org/schemas/v2_1/SDMXMessage.xsd
https://si3.bcentral.cl/SieteSdmx/SieteSdmx.ashx?SDMXCategory=SDMX_BOP6


36  
 

7.4 Submit Data Registration Request with Curl 
Submitting a registration requires to be authenticated. This can be done directly at the time of 
execution using Curl. The steps below outline how to perform an automatic registration: 

1. Save the SDMX message from SDMX Registration Message in an XML file and edit it as 
needed 

2. Open an environment where you can use Curl 
3. Make sure the current working directory is the one where your XML registration request is 

saved 
4. Copy and paste the following command: 

#!/bin/bash 
URL=https://sdmxcentral.imf.org/ws/secure/sdmxapi/rest 
AUTH="username:password" 
curl -X POST -H "Content-Type: application/xml" -u ${AUTH} -d @filename.xml -v ${URL} 

Where ‘URL’ is the Entry Point (see Overview), AUTH should be edited to contain the user’s 
username and password and filename.xml should be replaced with the name of the file referenced at 
point 1 of the list above. 

After executing this command, a response message will be displayed. If the registration was 
successful it should look like the screenshot below: 

 

<reg:StatusMessage status=”Success”> suggests that the registration was carried out successfully. 
The result should be visible from IMF SDMX Central. 

  



37  
 

7.5 Submit Data Registration Request with Python 
The code below can be used to submit an automatic registration using Python and the ‘requests’ 
package. Highlighted in yellow, the fields that should be edited according to the specific case: 
username, password and the name of the file containing the SDMX message shown in SDMX 
Registration Message. 

import requests 
 
# Define the authentication credentials required to access the API 
AUTH = ('username', 'password') 
# Define the URL of the API endpoint you want to send the POST request to 
URL = 'https://sdmxcentral.imf.org/ws/secure/sdmxapi/rest' 
 
# Set the name of the XML file 
xml_file = "filename.xml" 
 
# Define the headers for the request 
headers = {'Content-Type':'application/xml'} 
# Open the XML file and read its content 
with open(xml_file, 'r') as file: 
    xml = file.read() 
 
# Make a POST request to the specified URL, passing the XML data and headers, and providing authentication 
response = requests.post(URL, data=xml, headers=headers, auth=AUTH) 
 
# Check if the request was successful (status code 200) 
if response.status_code == 200: 
    # Print the response content 
    print(response.text) 
else: 
    # Print the error message if the request was not successful 
    print("Error:", response.status_code, response.text) 
 


	1 Scope of this Guide
	1
	1
	1
	1
	2 REST API Overview
	2.1 SDMX queries
	2.2 Elements of a Query
	2.3 Software Version

	1
	1
	1
	3 File Formats
	3.1 CSV Files
	3.2 JSON Files
	3.3 XML Files
	3.4 XLSX Files

	4 Query Structures Web Service
	4.1 Overview
	4.2 HTTP Headers
	4.3 Resources
	4.4 Path Parameters
	4.5 Request Parameters
	1.1
	4.6 Examples
	4.6.1 All concept schemes in SDMX v2.1 format.
	4.6.2 All structures saved to a file.
	4.6.3 Any concept with Id OBS_STATUS and all the data structures that reference it.
	4.6.4 ECOFIN Concept Scheme in SDMX v3.0 format, using Curl, save data to XML file.


	5 Programmatic Structural Validation Web Services
	5.1 Overview
	5.2 HTTP Headers
	5.3 Verification Output
	5.3.1 Example of Validation Output for Valid Dataset
	5.3.2 Example of validation output for invalid dataset
	5.3.3 Example of error output from a server
	5.3.4 Examples of error types

	5.4 Examples
	5.4.1 Validate an XML file containing data using Curl
	5.4.2 Validate a CSV file containing data using Curl
	5.4.3 Validate an Excel file containing data using Python
	5.4.4 Validate an XML file containing data using Python


	6 Programmatic Dataset Conversion Web Services
	6.1 Overview
	1.1
	6.2 HTTP Headers
	6.3 Examples
	6.3.1 Transform a CSV file containing ECOFIN data into a SDMX-ML 2.1 file.
	6.3.2 Transform an Excel file containing data in a SDMX-ML 2.1 file using Python.
	6.3.3 Transform a SDMX-ML 2.1 file containing data in a CSV file using Python
	6.3.4 Transform a SDMX-ML 2.1 file containing data in a Fusion Excel file using Python


	7 Registering data using Web Services
	7.1 Overview
	7.2 Introduction
	7.3 SDMX Registration Message
	7.4 Submit Data Registration Request with Curl
	7.5 Submit Data Registration Request with Python


